
Smart I2C GLCD Instruction Set March 2018 Page 1

Smart I2C GLCD – Instructions

Version 1.12, 24-Mar-2018 – Stephan Laage-Witt

Coordinate System

The origin (coordinate 0/0) is located at the upper left
corner.

Y_MAX is 63.

X_MAX is 127 for displays with 2 graphic controller chips
(type 1), and 191 for those with 3 chips (type 2)

Coordinate specifications outside this range are clipped.

Instruction Set

Mnemonic Code Parameters (bytes)

GLCD_ON 01 None

Switches on the display.

GLCD_OFF 02 None

Switches display off and enters low power mode. The display is blanked; however, display memory will be
maintained.

GLCD_SET_LIGHT 03 Light level [range: 0…10]

Sets the level of the display back light. The range is 0 (completely switched off) to 10 (maximum light level).
The new value is saved to the eePROM and will be used as default setting after power on.

GLCD_DIM_ON 04 None

Shuts off the display back light. The default light level (as stored in the eePROM) remains unchanged. This
command is useful for temporarily switching off the display light, e.g. to reduce power consumption.

GLCD_DIM_OFF O5 None

Restores the display back light to the previous value (prior to GLCD_DIM_ON).

GLCD_SET_I2C 06 I2C address [range: 8…127]

Changes the current I2C address to a new value. The display will be reset. The new I2C address is captured in
the eePROM and will be used as default at power on.

GLCD_VERBOSE_ON 07 None

Activates verbose mode. In this mode, the display shows the following additional information:
1) At start-up, key parameters (firmware version, I2C address, display back light level)
2) During use, unknown instruction tokens are displayed preceded by ‘*’

This mode is useful for debugging. Verbose setting is preserved in the eePROM.

GLCD_VERBOSE_OFF 08 None

Deactivates verbose mode

GLCD_AUTOSCROLL_ON 09 None

Activates auto scroll for text output via the instructions GLCD_DRAW_STRING, GLCD_DRAW_CHAR,
GLCD_DRAW_UDEC, GLCD_DRAW_SDEC. Auto scroll includes line feed/carriage return at the right border and
scrolling upwards at the bottom border.
Auto scroll setting is preserved in the eePROM.

GLCD_AUTOSCROLL_OFF 10 None

Deactivates auto scroll. Text output beyond the right or bottom border are being ignored.

Smart I2C GLCD Instruction Set March 2018 Page 2

Mnemonic Code Parameters (bytes)

GLCD_ENTER_SLEEP_MODE 11 None

Enters the sleep mode of the controller to further reduce power consumption. This function requires the back
light to be switched off (light level 0 or dim function on) to become active. Otherwise it will be ignored. Sleep
mode will be disabled by any following instruction. Power consumption will be reduced by approximately
1mA.

GLCD_CLEAR_SCREEN 15 mode

Erases the display. If mode is 0, then the display is filled with “off”-pixels, otherwise “on”-pixels.

GLCD_SET_PIXEL 16 x, y, mode

Sets a pixel at the specified coordinate. If mode equals 0 then an “off”-pixels is set, otherwise an “on”-pixel.

GLCD_DRAW_LINE 17 x_start, y_start, x_end, y_end, mode

Plots a straight line. If mode equals 0 then “off”-pixels are used, otherwise “on”-pixels.

GLCD_DRAW_DOTTED_VER_LINE 19 x_pos, y_start, y_end, spacing, mode

Plots a dotted vertical line.

x_pos specifies the x coordinate for the vertical line. y_start and y_end define the start and end position of
the line.

spacing defines the number of empty pixels between the dots. The value 0 results in a solid line.

mode specifies whether “off”-pixels (mode equals 0) and are “on”-pixels should be used.

GLCD_DRAW_DOTTED_HOR_LINE 20 y_pos, x_start, x_end, spacing, mode

Plots a dotted horizontal line.

y_pos specifies the y coordinate for the horizontal line. x_start and x_end define the start and end position
of the line.

spacing defines the number of empty pixels between the dots. The value 0 results in a solid line.

mode specifies whether “off”-pixels (mode equals 0) and are “on”-pixels should be used.

GLCD_DRAW_FUNCTION 20 n, x_start, mode,
y data points {y1, y2, … yn}

Plots a series of y-coordinates from left to right.

n specifies the number of data points to be plotted.

x_start is the first x-coordinate position. The x-coordinate will be auto-incremented by 1 (shifted to the right)
for each data item. The sum of n and x_start must not exceed X_MAX to avoid plotting beyond the right
border of the display.

mode specifies whether “off”-pixels (mode equals 0) and are “on”-pixels should be used.

{y1 … yn} are the data points to be plotted. The number of data points must match n.

GLCD_DRAW_SCATTER 21 n, x_start, mode,
y_data points {y1, y2, … yn}

Same as “GLCD_DRAW_FUNCTION”, except that the y data points are not connected.

GLCD_DRAW_RECTANGLE 22 x_start, y_start, x_end, y_end, mode

Plots a rectangle of straight lines with start being the upper left corner and end the lower right coordinate.
If mode equals 0 then “off”-pixels are used, otherwise “on”-pixels.

GLCD_DRAW_FILLED_RECTANGLE 23 x_start, y_start, x_end, y_end, mode

Same as “GLCD_DRAW_RECTANGLE”, except that the rectangle will be filled.

GLCD_DRAW_CIRCLE 25 x_origin, y_origin, radius, segment, mode

Plots a circle at origin with radius as specified.

Segment specifies the sector(s) to be plotted. Each bit represents a sector as shown
on the right. Any combination is possible. E.g. 0b11111111 plots a full circle,
0b00001111 specifies a right half circle, etc.

If mode equals 0 then “off”-pixels are used, otherwise “on”-pixels.

Smart I2C GLCD Instruction Set March 2018 Page 3

Mnemonic Code Parameters (bytes)

GLCD_DRAW_FILLED_CIRCLE 26 x_origin, y_origin, radius, segment, mode

Plots a filled circle at origin with radius as specified.
Segment specifies the sector to be plotted. Each bit represents a sector as shown,
with any combination being possible. Only the 4 lower bits are interpreted. E.g.
0b00001111 plots a full filled circle, etc.

If mode equals 0 then “off”-pixels are used, otherwise “on”-pixels.

GLCD_LOAD_RAW 30 x_pos, y_page [range: 0 … 7], n,
raw data bytes {db1, db2, … dbn}

Loads data bytes directly into the display memory. Display memory is organized
into 8 rows of bytes with each byte representing a vertical column of 8 pixels.

x_pos specifies the starting position. y_page defines the selected page.

n is the number of bytes to be loaded, starting a x_pos and incrementing to the
right. Data exceeding X_MAX will be ignored.

GLCD_DRAW_CHAR 32 char

Plots a character using the currently selected font set. The character is plotted at the current text cursor
position. The cursor position specified the upper left corner of the character and will be shifted to the right
end of the character.

GLCD_DRAW_STR 33 zero terminated string {char1, char2, … char n, 0}

Plots a string. The current text cursor position specified the upper left corner of the
string and will be shifted to the right edge of the string after execution.
The system handles 2 special characters:
‘\n’ = ASCII(13) -> new line, advances to the next line below the current line, scrolls
the display up if needed, and positions the cursor to the left edge of the display.
‘\t’ = ASCII(8) -> advances the cursor to the next tab position. Tab positions are every 32 pixel.

GLCD_DRAW_CENTER_STRG 34 zero terminated string {char1, char2, … char n, 0}

Same as GLCD_DRAW_STR, except that the string is centred at the
current x-position of text cursor.

The string length must not exceed 64 characters. Longer strings are
truncated. Special characters (‘/n’ or ‘/t’) are not allowed for this
function.

GLCD_DRAW_UDEC 35 upper byte, lower byte [of unsigned integer, 16 bits],
number of digits [1 … 5],
decimal point position [0 … number of digits – 1]

Prints a decimal representation of a 16 bit value at the current position to the text cursor (see
GLCD_SET_CURSOR)

Upper byte and lower byte represent the 16 bits value to be displayed. The routine does not handle negative
values.

Number of digits specifies the expected number of positions. The decimal value will be right adjusted and
filled with leading spaces to reach the requested number of digits. It is the user’s responsibility to ensure
that the number of digits allows the decimal value to be displayed. E.g. 3 digits can handle values up to 999
and will give unpredictable results for greater values.

Decimal point position specifies the position of a decimal point, counting from the right. 0 omits any decimal
point. E.g. a value of 2 inserts a decimal point two positions from the right. This feature is useful for fixed
point arithmetic.

Example: 123, 4, 2 -> 1.23

 123, 5, 0 -> 123

Smart I2C GLCD Instruction Set March 2018 Page 4

Mnemonic Code Parameters (bytes)

GLCD_DRAW_SDEC 36 upper byte, lower byte [of signed integer, 16 bits],
number of digits [1 … 5],
decimal point position [0 … number of digits – 1]

Same as GLCD_DRAW_UDEC, however handles signed integers.

Example: -123, 4, 2 -> -1.23

 -123, 5, 0 -> -123

GLCD_DRAW_RADJ_STR 37 zero terminated string {char1, char2, … char n, 0}

Same as GLCD_DRAW_STR, except that the string is right
adjusted at the current x-position of the text cursor.

The string length must not exceed 64 characters. Longer strings
are truncated. Special characters (‘/n’ or ‘/t’) are not allowed
for this function.

GLCD_SET_CURSOR 50 x, y

Sets the cursor for char and string commands

GLCD_SET_FONT 51 font [0 … 5]

Sets the font set accordingly. For the list of available fonts, see separate chapter.

GLCD_SCROLL_UP 52 Pages [1 … 4]

Scrolls up the display from bottom to top by the number of pages as specified. A page is a row of 8 pixel
lines. This function creates space at the bottom of the display. The upper portion of the display memory will
be discarded.

Functions retrieving status information from the display

Note: Read access to the display requires synchronous execution and cannot be buffered. The user needs to ensure that the interface
module executes the read action prior to retrieving data via the I2C interface. This can be achieved by waiting for the buffer_empty line
to reach high-level prior to executing data retrieval. Alternatively, the host system may wait for a short amount of time (can be up to 50
msec).

Incorrect data may be retrieved in case data retrieval is executed before the interface was able to prepare the requested data. For
examples, please refer to the Arduino glcd_functions library.

GLCD_GET_STR_WIDTH 60 zero terminated string {char1, char2, … char n, 0}

Returns: (byte) str_width

The function calculates the horizontal width (number of pixel) of the submitted string, based on the current
font set. Maximum string length is 64 characters. Special characters (e.g. line feed, tabulator) are ignored.

GLCD_GET_CURSOR 61 None

Returns: (byte) x_cur, (byte) y_cur

Returns the current position of the text cursor.

GLCD_GET_FONT 62 None

Returns: (byte) font

Returns the ID number of the currently selected font.

GLCD_GET_MAX_XY 63 None

Returns: (byte) max_x, (byte) max_y

Returns the display width and height in terms of the maximum x- and y-position.

max_x: 127 or 192
max_y: 63

GLCD_GET_FONT_HEIGHT 65 None

Returns: (byte) font_height

Returns the height (number of pixels) of the currently selected font

Smart I2C GLCD Instruction Set March 2018 Page 5

Fonts

The interface module provides 8 different fonts.

Font #0 is a fixed space font with a character size pf 5x8. This font serves as default at system start-
up.

Fonts 1 to 6 are fonts of different height and variable character widths:
 Font #1: height 5 pixels
 Font #2: height 8 pixels
 Font #3: Arial, height 8
 Font #4: Calibri, height 10
 Font #5: Arial, height 12
 Font #6: Arial bold, height 14

For all fonts, the available ASCII values are limited to the range 32 to 127. ASCII values outside this
range are ignored.

The system accepts control characters:
 ‘\t’ (0x09) advances the cursor to the next horizontal tab stops at 32, 64, 96, 128, 160 pixels
 ‘\n’ (0x0A) initiates a line feed with the pixel height as defined by the current font.

If “auto scroll” is activated, the system inserts line breaks once the text cursor reaches the right
border and scrolls up the display at the bottom border.

Font #7 provides a set of symbols with a height of 12 and variable width. Character values in the
range of 32 to 71 are accepted. The following symbols are included as part of the current firmware:

 Symbol 32 – 40

 Symbol 41 – 50

 Symbol 51 – 60

 Symbol 61 - 71

